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Three methods were used to evaluate certain integrals involving Chebyshev 
polynomials. The paper shows that a seemingly simple computational problem 
may be intractable unless a suitable algorithm is chosen. In this case the simplest 
conceivable method fails badly and a more sophisticated method has severe 
limitations on the significance that can be obtained. The third method is based on 
a three-term inhomogeneous recursion. Asymptotic analysis shows that there is 
a rapidly increasing solution and a rapidly decreasing solution, while the desired 
solution decreases slowly. Therefore, neither forward nor backward recurrence 
is stable for this method. We will demonstrate the application of the powerful 
algorithm developed by Olver [l] to obtain the solution. 

The problem arose in calculating the electric field and kinetic energy for an 
inhomogeneous periodic nonlinear plasma by means of a Fourier-Chebyshev 
expansion [2, 3,4]. 

Chebyshev polynomials used in the expansion are those of the first kind [5], viz., 

T,(u) = cos(n cos-lu) 

for --I < v ,< 1 and nonnegative integer n. The Chebyshev polynomials form 
an orthogonal system on [--I, I] with weight function (1 - u~)-~‘~. Note that 
T,(v) is an even polynomial if n is even, and odd if n is odd. 

The problem reduces to the calculation of the following sequence of integrals: 

s,= l 
s 

T2,(v) e-s2u2/2 do, n = 0, 1, 2,. . . . (1) 
-1 

Since 1 Tzn(u)l < 1 the integrals (1) are bounded by S,, . Furthermore, they 
converge to zero as n tends to infinity, a fact that follows easily from the Riemann- 
Lebesgue lemma after setting 21 = cos 0. 
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Method I. The first approach that comes to mind is term-by-term integration 
of the expressions obtained by representing the Chebyshev polynomials in powers 
of v. Then 

S, = i (-l)n+k aknVk, 
k=O 

where 

(2) 

(3) 

and (-l)“+” akn is the coefficient of v2k in T2,(v). Values of vk can be obtained 
by backward recurrence after an integration by parts. S, calculated this way are 
given in Tables I and II under Method I. 

Method II. The second approach is based on expanding the exponential 
e-saQ’/2 in Chebyshev polynomials: 

e-s2~2~2 = $co + f (- 1)” CkT2&). 
k=l 

(4) 

It can be shown that 

ck = 2e-““‘“zk(s2/4), (5) 

where Ik are the modified Bessel functions [6]. By using identities for products of 
T, to represent the integrand we obtain a sequence of approximations to S, 

SnK = $c,b,” + 2 (-1)” b,“c, , (6) 
k=l 

where bkn = -l/(4@ + /c)~ - 1) - 1/(4(n - k)2 - 1). The approximations (6) 
converge quite rapidly to S, as K -+ co. Results of calculating S, on the basis 
of (6) are shown in Tables I and II under Method II. 

Method III (Olver’s Algorithm). The most satisfactory approach is based on 
an inhomogeneous second-order linear difference equation obtained by integrating 
(1) by parts. Using identities on Chebyshev polynomials [5], we obtain from (1) 

sy2n - I) s 
8 n+1 - 

s2 + 2(4n2 - 1) s _ s2(2n + 1) 
4 la 8 

S,-, = e+12 (7) 

after some rearrangement. 
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The asymptotic nature of the solutions of Eq. (7) can be expected to be similar 
to the solutions of the equation 

W/4) Sn+1 - 2nS, - (s2/4) S,-, = ecs2i2/n, @a) 

which is obtained by neglecting terms of relative order l/n in the coefficients. 
In a similar way, the solutions of (8a) are approximated by S, = Q&r where Qn 
satisfies 

where 01 = 4/s2. 

Q n+1 - 2anQ, - Qn-, = ae-2Ja, (8b) 

The solutions of the homogeneous part of (8b) are the Bessel functions 
(-1)” Zn(l/o(> and &(l/ol). For large n and fixed 01, these functions have the 
following asymptotic forms [5]: 

Z,(l/ol) - l/(201)” n! (9) 

Kn(l/oI) - 6(2(X)” (n - l)! (10) 

As will be shown below, the solution we are trying to calculate lies between the 
solutions (9) and (10). Consequently, once a small component of (10) is present 
in the solution obtained by forward recursion, the calculation will be eventually 
dominated by (10). The same holds true for (9) when backward recursion is used. 
The backward recursion will be dominated by the most rapidly growing solution, 
in this case (9). 

We can see where the desired solution lies by looking at the asymptotic behavior 
of the particular solution of (8b) given below: 

Qn = -e-+K,(l/ol) 2 4(1/a) 
k=n 

n-1 

-e-2+l)” ZJl/ol) 1 (-1)” &(l/oc). (11) 
k=O 

This solution can be obtained by the analog to the method known in differential 
equation theory as variation of parameters. It can be verified by substitution. 
For large n, retaining dominant terms in (11) we obtain 

a2 - -e-2/“(l/2n) + e-2/“[1/401n(n - I)] - -e-2/“(1/2n). w 

Since S, = QJn, all of the analysis on Qn applies to S,, as well. Since it is clear 
from (12) that neither the forward recursion dominated by (IO), nor the backward 
recursion dominated by (9), would yield l/n2 type behavior of S, , a more powerful 
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solution technique is required. Such a technique is the method developed by 
Olver [l]. 

The method is applicable to an arbitrary inhomogeneous linear difference 
equation of second order provided only that there exist two complementary 
solutions such that one grows asymptotically more rapidly than the other, i.e., 
their ratio tends to zero, and that the desired particular solution is dominated by 
the more rapidly growing complementary solution. Our asymptotic analysis 
indicated that these conditions are met for the difference Eq. (7). 

Essentially, the method makes it possible to solve (7) as a boundary value 
problem rather than as an initial value problem. The first boundary condition is 
the initial point S,, , which must be calculated separately. The second boundary 
condition is obtained by setting S, equal to zero for some integer n. The integer n 
is determined automatically in such a way that truncation errors in the algorithm 
will lie within a preassigned tolerance. The computation proceeds by simple 
recurrences that are numerically stable. 

Comparison of Results. Since Olver’s algorithm gives results to within a 
preassigned error, these will be used as a standard for comparison of the methods. 

Table I gives results obtained by Methods I, II, and 111 for s = 6. As can be 
seen, Method I is unstable and by the time n = 24 is reached, all significance 
has been lost, while Method II retains eleven or more correct significant figures 
throughout the range given. 

Table II gives results for s = 10. Here Method I gives results with no correct 
significant figures at n = 36, while Method II still has eleven correct significant 
figures at this point. In the asymptotic region, however, for values of n > 61, 
neither Method I nor Method II have any significant figures. 

The qualitative behavior of results obtained by Methods I and II is explained 
in the following way. The onset of severe cancellation errors in the sum (2) 
of Method I occurs at higher values of n for increasing s because Vk goes to zero 
more rapidly with increasing k as s is increased. The behavior of the results of 
Method II as a function of s is opposite from that of Method I. As can be seen 
from (1) the integrals decrease more rapidly with increasing n as s is increased. 
But from (6) one can see that Method II yields results on the basis of cancellation 
of terms which are of the order of l/n2 at most. 

Consequently, in a double precision calculation which carries eighteen figures no 
function value can be computed by Method II that is smaller than IO-18/n2. This 
is why for s = 6 (Table I), where values in the asymptotic region are of the order 
of lo-11, Method II can yield eleven significant figures but for s = 10 (Table II), 
where values in the asymptotic region are of the order of 10-25, it can yield no 
significance. 

Finally, ratios of values obtained by Method II1 do indeed show the l/n2 
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behavior in the asymptotic region as predicted by the analysis. In fact, the 
agreement is good to three figures. We discuss ratios here because the computer 
output is such that SO in (1) is normalized to unity. 
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